Morphological and Molecular Characterization of Duckweed (Lemnaceae) in Selected Wetlands and Pond Waters of Tharaka-Nithi County, Kenya

Authors

  • Kathenya Gitonga Muthike Tharaka University-Kenya
  • Marciano Mutiga Tharaka University-Kenya
  • Eric Kuria Chuka University-Kenya

Keywords:

Duckweed, characterization, taxonomic variation, conservation, sustainable utilization

Abstract

Duckweeds are aquatic herbs adapted to various geographic and climatic zones, with significant applications in wastewater treatment, animal feeds, biofuel production, and as a culinary ingredient in some Asian countries. In Kenya, including Tharaka-Nithi County, duckweed has attracted the attention of farmers as a feed supplement for livestock. However, commercial extraction poses a threat to the survival of the plant and its ecological roles, necessitating its conservation and the promotion of sustainable utilization. This study aimed at characterizing local duckweed species to understand their taxonomic variation and distribution in Tharaka-Nithi County. One hundred and forty-four samples were collected from selected wetlands and ponds, with GPS coordinates and elevation of sampling points recorded for analysis of their distribution. Morphological features of duckweed were studied, and the DNA was extracted for molecular characterization using DNA barcoding markers. Based on morphological characterization, samples were grouped into nine clones. All nine clones had parallel veins and obovate fronds with rounded apices. Frond symmetry, color, border, and length varied among clones. Morphological data suggested that the clones belonged to the same genus, consistent with previous studies. Further, molecular characterization that was done using RBCL and matK genes successfully confirmed that they were duckweed species. Six RBCL gene amplification products were sequenced, with BLAST search results indicating the genus Lemna. Three samples collected from Chogoria, Gatithini, and Ikumbo were identified as Lemna minor. In contrast, samples collected from Marimanti, Kathwana, and Kaanwa were identified as Lemna turionifera, Lemna aequinoctialis, and Lemma perpusilla, respectively. Lemna minor and Lemna turionifera were predominant in treated sewage ponds, while Lemna aequinoctialis and Lemma perpusilla were found on still waters in swamps and fishponds, respectively. This study provides baseline information that can be used in formulating conservation and utilization policies for duckweed in Tharaka-Nithi County and beyond.

Author Biographies

Kathenya Gitonga Muthike, Tharaka University-Kenya

Department of Dry Land Agriculture and Natural Resources

Marciano Mutiga , Tharaka University-Kenya

Department of Dry Land Agriculture and Natural Resources

Eric Kuria, Chuka University-Kenya

Department of Biological Sciences

References

Al-Dakhil, M., Alghamdi, S., Migdadi, H., Afzal, M., & Ali, A. A. (2021). Morphological characterization and DNA barcoding of duckweed species in Saudi Arabia. Plants, 10(11), 2438. https://doi.org/10.3390/plants10112438

Andriani, Y., Irawan, B., Iskandar, I., Zidni, I., & Partasasmita, R. (2019). Short communication: Diversity of duckweed (Araceae–Lemnoideae), morphological characteristics and its potential as food sources for herbivorous fishes in West Java, Indonesia. Biodiversitas, 20(6), 1617–1623. https://doi.org/10.13057/biodiv/d200618

Appenroth, K. J., Borisjuk, N., & Lam, E. (2013). Telling duckweed apart: Genotyping technologies for Lemnaceae. Chinese Journal of Applied and Environmental Biology, 19, 1–10.

Appenroth, K. J., Sree, K. S., Böhm, V., Hammann, S., Vetter, W., Leiterer, M.,(2017). Nutritional value of duckweeds (Lemnaceae) as human food. Food Chemistry, 217, 266–273. https://doi.org/10.1016/j.foodchem.2016.10.110

Appenroth, K. J., Sree, K. S., Bog, M., Ecker, J., Seeliger, C., & Böhm, V. (2018). Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human food. Frontiers in Chemistry, 6, 483. https://doi.org/10.3389/fchem.2018.00483

Azer, S. A. (2013). Taxonomic revision of genus Lemna L. (Lemnaceae Gray) in Egypt. Annals of Agricultural Sciences, 58(2), 257–263. https://doi.org/10.1016/j.aoas.2013.05.003

Baek, G. Y., Saeed, M., & Choi, H. K. (2021). Duckweeds: Their utilization, metabolites and cultivation. Applied Biological Chemistry, 64(1), 1–15. https://doi.org/10.1186/s13765-021-00644-z

Baliban, R. C., Elia, J. A., Floudas, C. A., Xiao, X., Zhang, Z., Li, J., Cao, H., Ma, J., Qiao, Y., & Hu, X. (2013). Thermochemical conversion of duckweed biomass to gasoline, diesel, and jet fuel: Process synthesis and global optimization. Industrial & Engineering Chemistry Research, 52(33), 11436–11450. https://doi.org/10.1021/ie402085y

Baudo, R., Foudoulakis, M., Arapis, G., Perdaen, K., Lanneau, W., Paxinou, A.-C. M., Kouvdou, S., & Persoone, G. (2015). History and sensitivity comparison of the Spirodela polyrhiza microbiotest and Lemna toxicity tests. Knowledge & Management of Aquatic Ecosystems, (416). https://doi.org/10.1051/kmae/2014038

Bog, M., Appenroth, K.-J., & Sree, K. S. (2019). Duckweed (Lemnaceae): Its molecular taxonomy. Plants, 8, 133. https://doi.org/10.3390/plants8100133

Borisjuk, N., Chu, P., Gutierrez, R., Zhang, H., Acosta, K., Friesen, N., … (2015). Assessment, validation and deployment strategy of a two-barcode protocol for facile genotyping of duckweed species. Plant Biology, 17, 42–49. https://doi.org/10.1111/plb.12229

Braglia, L., Breviario, D., Gianì, S., Gavazzi, F., De Gregori, J., & Morello, L. (2021). New insights into interspecific hybridization in Lemna L. sect. Lemna (Lemnaceae Martinov). Plants, 10(12), 2767. https://doi.org/10.3390/plants10122767

Bremer, B., Bremer, K., Chase, M. W., Reveal, J. L., Soltis, D. E., Soltis, P. S., & Stevens, P. F. (2003). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society, 141(4), 399–436. https://doi.org/10.1046/j.1095-8339.2003.00169.x

Cabrera, L. I., Salazar, G. A., Chase, M. W., Mayo, S. J., Bogner, J., & Dávila, P. (2008). Phylogenetic relationships of aroids and duckweeds (Araceae) inferred from coding and noncoding plastid DNA. American Journal of Botany, 95(9), 1153–1165. https://doi.org/10.3732/ajb.0800033

Ceschin, S., Leacche, I., Pascucci, S., & Abati, S. (2016). Morphological study of Lemna minuta Kunth, an alien species often mistaken for the native L. minor L. (Araceae). Aquatic Botany, 131, 51–56. https://doi.org/10.1016/j.aquabot.2016.02.004

Chase, M. W., Cowan, R. S., Hollingsworth, P. M., Van den Berg, C., Madriñán, S., Petersen, G., & Wilkinson, M. (2007). A proposal for a standardized protocol to barcode all land plants. Taxon, 56(2), 295–299. https://doi.org/10.2307/25065519

Cheng, J. J., & Stomp, A.-M. (2009). Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. Clean – Soil, Air, Water, 37(1), 17–26. https://doi.org/10.1002/clen.200800297

Chen, G., Stepanenko, A., Lakhneko, O., Zhou, Y., Kishchenko, O., Peterson, A., Cui, D., Zhu, H., Xu, J., Morgun, B., Gudkov, D., Friesen, N., & Borysyuk, M. (2022). Biodiversity of duckweed (Lemnaceae) in water reservoirs of Ukraine and China assessed by chloroplast DNA barcoding. Plants, 11(11), 1468. https://doi.org/10.3390/plants11111468

Choi, K. S., Park, K. T., & Park, S. J. (2017). The chloroplast genome of Symplocarpus renifolius: A comparison of chloroplast genome structure in Araceae. Genes, 8, 324. https://doi.org/10.3390/genes8120324

Clark, P. B., & Hillman, P. F. (1996). Enhancement of anaerobic digestion using duckweed (Lemna minor) enriched with iron. Journal of the Chartered Institution of Water and Environmental Management, 10(2), 92–95. https://doi.org/10.1111/j.1747-6593.1996.tb00357.x

Crawford, D. J., & Landolt, E. (1995). Allozyme divergence among species of Wolffia (Lemnaceae). Plant Systematics and Evolution, 197(1–2), 59–69. https://doi.org/10.1007/BF00988458

Crawford, D. J., Landolt, E., & Les, D. H. (1996). An allozyme study of two sibling species of Lemna (Lemnaceae) with comments on their morphology, ecology and distribution. Bulletin of the Torrey Botanical Club, 123(1), 1–6. https://doi.org/10.2307/2997229

Crawford, D. J., Landolt, E., Les, D. H., & Tepe, E. (1997). Allozyme variation and the taxonomy of Wolffiella. Aquatic Botany, 58, 43–54. https://doi.org/10.1016/S0304-3770(97)00009-X

Cusimano, N., Bogner, J., Mayo, S. J., Boyce, P. C., Wong, S. A. Y., Hesse, M., … (2011). Relationships within the Araceae: Comparison of morphological patterns with molecular phylogeny. American Journal of Botany, 98(4), 654–668. https://doi.org/10.3732/ajb.1000228

Drouin, G., Daoud, H., & Xia, J. (2008). Molecular phylogenetics and evolution: Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Molecular Phylogenetics and Evolution, 49(1), 137–141. https://doi.org/10.1016/j.ympev.2008.07.003

Fazekas, A. J., Burgess, K. S., Kesanakurti, P. R., Graham, S. W., Newmaster, S. G., … (2008). Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE, 3(7), e2802. https://doi.org/10.1371/journal.pone.0002802

Ford, C. S., Ayres, K. L., Toomey, N., Haider, N., Van Alphen Stahl, J., Kelly, L. J., … & Wilkinson, M. J. (2009). Selection of candidate coding DNA barcoding regions for use on land plants. Botanical Journal of the Linnean Society, 159(1), 1–11. https://doi.org/10.1111/j.1095-8339.2008.00949.x

Friedjung Yosef, A., Ghazaryan, L., Klamann, L., Kaufman, K. S., Baubin, C., Poodiack, B., Ran, N., Gabay, T., Didi-Cohen, S., Bog, M., Khozin-Goldberg, I., & Gillor, O. (2022). Diversity and differentiation of duckweed species from Israel. Plants, 11(23), 3326. https://doi.org/10.3390/plants11233326

Gioto, V., Wandiga, S., & Oludhe, C. (2016). Climate change detection across all livelihood zones in Tharaka Nithi County. Journal of Meteorology and Related Sciences, 9(2), 7–16.

Goopy, J. P., & Murray, P. J. (2003). A review on the role of duckweed in nutrient reclamation and as a source of animal feed. Asian-Australasian Journal of Animal Sciences, 16(2), 297–305. https://doi.org/10.5713/ajas.2003.297

Hau, E. H., & Mah, S. H. (2024). Duckweed: Growth factor and applications in non-food, food, and health. Food Safety and Health. Advance online publication. https://doi.org/10.1002/fsh3.12078

Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35(2), 518–522. https://doi.org/10.1093/molbev/msx281

Hollingsworth, P. M., Graham, S. W., & Little, D. P. (2011). Choosing and using a plant DNA barcode. PLoS ONE, 6(5), e19254. https://doi.org/10.1371/journal.pone.0019254

Ho, E. K., Bartkowska, M., Wright, S. I., & Agrawal, A. F. (2019). Population genomics of the facultatively asexual duckweed Spirodela polyrhiza. New Phytologist, 224(3), 1361–1371. https://doi.org/10.1111/nph.15856

Hou, W., Chen, X., Song, G., Wang, Q., & Chang, C. C. (2007). Effects of copper and cadmium on heavy metal polluted water-body restoration by duckweed (Lemna minor). Plant Physiology and Biochemistry, 45(1), 62–69. https://doi.org/10.1016/j.plaphy.2006.09.004

Irfan, S., & Alatawi, A. M. M. (2019). Aquatic ecosystem and biodiversity: A review. Open Journal of Ecology, 9(1), 1–13. https://doi.org/10.4236/oje.2019.91001

Karp, A., Kresovich, S., Bhat, K., Ayad, W., & Hodgkin, T. (1997). Molecular tools in plant genetic resources conservation: A guide to the technologies (IPGRI Techn. Bull. No. 2). International Plant Genetic Resources Institute.

Karp, A. (2000). Molecular tools for detecting genetic diversity. Acta Horticulturae, 530, 17–32. https://doi.org/10.17660/ActaHortic.2000.530.2

Keddy, P. A. (1976). Lakes as islands: The distributional ecology of two aquatic plants, Lemna minor L. and Lemna trisulca L. Ecology, 57(2), 353–359. https://doi.org/10.2307/1934721

Kress, W. J., & Erickson, D. L. (2007). A two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE, 2(6), e508. https://doi.org/10.1371/journal.pone.0000508

Kuehdorf, K., Jetschke, G., Ballani, L., & Appenroth, K. J. (2014). The clonal dependence of turion formation in the duckweed Spirodela polyrhiza – an ecogeographical approach. Physiologia Plantarum, 150(1), 46–54. https://doi.org/10.1111/ppl.12120

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096

Landolt, E. (1986). The family of Lemnaceae: A monographic study (Vol. 1). Veroff. Geobot. Inst. ETH Zürich, Stiftung Rubel 71.

Landolt, E., & Kandeler, R. (1987). The family of Lemnaceae: A monographic study (Vol. 2). Veroff. Geobot. Inst. ETH Zürich, Stiftung Rubel 71.

Lebonah, D. E., Dileep, A., Chandrasekhar, K., Sreevani, S., Sreedevi, B., & Pramoda Kumari, J. (2014). DNA barcoding on bacteria: A review. Advances in Biology, 2014, 541787. https://doi.org/10.1155/2014/541787

Les, D. H., Landolt, E., & Crawford, D. J. (1997). Systematics of the Lemnaceae (duckweeds): Inferences from micromolecular and morphological data. Plant Systematics and Evolution, 204, 161–177. https://doi.org/10.1007/BF00985257

Les, D. H., & Crawford, D. J. (1999). Landoltia (Lemnaceae), a new genus of duckweeds. Novon, 9(4), 530–533. https://doi.org/10.2307/3391894

Les, D. H., Crawford, D. J., Landolt, E., Gabel, J. D., & Kimball, R. T. (2002). Phylogeny and systematics of Lemnaceae, the duckweed family. Systematic Botany, 27(2), 221–240. https://doi.org/10.1043/02-40

Letsiou, S., Madesis, P., Vasdekis, E., Montemurro, C., Grigoriou, M. E., Skavdis, G., … & Tzakos, A. G. (2024). DNA barcoding as a plant identification method. Applied Sciences, 14(4), 1415. https://doi.org/10.3390/app14041415

Ma, X., Liu, H., Wang, L., & Liu, C. (2023). Effects of clonal integration on characteristics of free-floating and submerged plant communities under different nutrient conditions. Flora, 298, 152205. https://doi.org/10.1016/j.flora.2023.152205

McNeely, J. A., Miller, K. R., Reid, W. V., Mittermeier, R. A., & Werner, T. B. (1990). Conserving the world’s biological diversity. IUCN.

Mercy, C., Orina, S., Orina, T., Kemunto, V., Rebby, J., Ochingo, J., & Achoki, J. (2023). Indoor aquaculture potential of duckweed (Lemna minor). Aquaculture Advances, 2, 100022. https://doi.org/10.1016/j.aquaadv.2023.100022

Muriu-Ng’ang’a, F. W. (2017). Utilisation of selected rainwater harvesting and saving technologies for improved crop production in Tharaka South Sub-County, Kenya (Doctoral dissertation). Kenyatta University.

Nauheimer, L., Metzler, D., & Renner, S. S. (2012). Global history of the ancient monocot family Araceae inferred with models accounting for past continental positions and previous ranges based on fossils. New Phytologist, 195(4), 938–950. https://doi.org/10.1111/j.1469-8137.2012.04182.x

OECD/FAO. (2017). OECD-FAO agricultural outlook. OECD Publishing. https://doi.org/10.1787/agr-data-en

Ovesná, J., Poláková, K., & Leisová, L. (2002). DNA analyses and their applications in plant breeding. Czech Journal of Genetics and Plant Breeding, 38(1), 29–40.

Rao, N. (2004). Plant genetic resources: Advancing conservation and use through biotechnology. African Journal of Biotechnology, 3(2), 136–145.

Pagliuso, D., Grandis, A., Fortirer, J. S., Camargo, P., Floh, E. I. S., & Buckeridge, M. S. (2022). Duckweeds as promising food feedstocks globally. Agronomy, 12(4), 796. https://doi.org/10.3390/agronomy12040796/S1

Rothwell, G. W., Van Atta, M. R., Ballard Jr., H. E., & Stockey, R. A. (2004). Molecular phylogenetic relationships among Lemnaceae and Araceae using the chloroplast trnL-trnF intergenic spacer. Molecular Phylogenetics and Evolution, 30(2), 378–385. https://doi.org/10.1016/S1055-7903(03)00220-1

Shekhovtsov, S. V., Shekhovtsova, I. N., & Peltek, S. E. (2012). Phylogeny of Siberian species of Carex sect. Vesicariae based on nuclear and plastid markers. Nordic Journal of Botany, 30(3), 343–351. https://doi.org/10.1111/j.1756-1051.2011.00966.x

Shekhovtsov, S., Shekhovtsova, I., & Peltek, S. E. (2019). DNA barcoding: Methods and approaches. Biology Bulletin Reviews, 9(6), 475–483. https://doi.org/10.1134/S2079086419060050

Shneyer, V. (2009). DNA barcoding is a new approach in comparative genomics of plants. Russian Journal of Genetics, 45(12), 1267–1278. https://doi.org/10.1134/S1022795409120045

Shneer, V. S. (2009). DNA barcoding is a new approach in comparative genomics of plants. Genetika, 45(10), 1436–1448.

Skillicorn, P., Spira, W., & Journey, W. (1993). Duckweed aquaculture: A new aquatic farming system for developing countries. World Bank Technical Paper No. 135. World Bank.

Sree, K. S., Adelmann, K., Garcia, C., Lam, E., & Appenroth, K. J. (2015a). Natural variance in salt tolerance and induction of starch accumulation in duckweeds. Planta, 241(6), 1395–1404. https://doi.org/10.1007/s00425-015-2320-6

Sree, K. S., Sudakaran, S., & Appenroth, K. J. (2015b). How fast can angiosperms grow? Species and clonal diversity of growth rates in the genus Wolffia (Lemnaceae). Acta Physiologiae Plantarum, 37(5), 204. https://doi.org/10.1007/s11738-015-1937-6

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA 5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739. https://doi.org/10.1093/molbev/msr121

Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA 4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599. https://doi.org/10.1093/molbev/msm092

Takács, K., Végh, R., Mednyánszky, Z., Haddad, J., Allaf, K., Du, M., Chen, K., Kan, J., Cai, T., Molnár, P., Bársony, P., Maczó, A., Zalán, Z., & Dalmadi, I. (2025). New insights into duckweed as an alternative source of food and feed: Key components and potential technological solutions to increase their digestibility and bioaccessibility. Applied Sciences, 15(2), 884. https://doi.org/10.3390/app15020884

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight-matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673

Toro, M. A., & Caballero, A. (2005). Characterization and conservation of genetic diversity in subdivided populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1459), 1367–1378. https://doi.org/10.1098/rstb.2005.1686

Van der Plas, F. (1972). Lemnaceae. Flora Malesiana, Series 1 – Spermatophyta, 7(1), 219–237.

Van Hoeck, A., Horemans, N., Monsieurs, P., Cao, H. X., Vandenhove, H., & Blust, R. (2015). The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications. Biotechnology for Biofuels, 8, 188. https://doi.org/10.1186/s13068-015-0215-5

Vasseur, L., Aarssen, L. W., & Bennett, T. (1993). Allozymic variation in local apomictic populations of Lemna minor (Lemnaceae). American Journal of Botany, 80(10), 974–979. https://doi.org/10.1002/j.1537-2197.1993.tb14452.x

Vasseur, L., Irwin, D. L., & Aarssen, L. W. (1995). Size versus number of offspring as predictors of success under competition in Lemna minor (Lemnaceae). Annales Botanici Fennici, 32(2), 169–178.

VSN International. (2021). Genstat for Windows (21st ed.) [Software]. VSN International.

Wang, W., Wu, Y., Yan, Y., Ermakova, M., Kerstetter, R., & Messing, J. (2010). DNA barcoding of the Lemnaceae, a family of aquatic monocots. BMC Plant Biology, 10, 205. https://doi.org/10.1186/1471-2229-10-205

Wang, Q., Yu, Q. S., & Liu, J. Q. (2011). Are nuclear loci ideal for barcoding plants? A case study of genetic delimitation of two sister species using multiple loci and multiple intraspecific individuals. Journal of Systematics and Evolution, 49(3), 182–188. https://doi.org/10.1111/j.1759-6831.2011.00152.x

Wang, W., Haberer, G., Gundlach, H., Gläßer, C., Nussbaumer, T., Luo, M. C., Lomsadze, A., … & Messing, J. (2014). The Spirodela polyrhiza genome reveals insights into its neotenous reduction, fast growth and aquatic lifestyle. Nature Communications, 5, 3311. https://doi.org/10.1038/ncomms4311

Wolfe, K. H., Li, W. H., & Sharp, P. M. (1987). Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences of the United States of America, 84(24), 9054–9058. https://doi.org/10.1073/pnas.84.24.9054

Wyatt, J. (2016). Grain and plant morphology of cereals and how characters can be used to identify varieties. In C. Wrigley, H. Corke, K. Seetharaman, & J. Faubion (Eds.), Encyclopedia of Food Grains (2nd ed., pp. 51–72). Academic Press.

Xu, S. Q., Stapley, J., Gablenz, S., Boyer, J., Appenroth, K. J., Sree, K. S., … & Messing, J. (2019). Low genetic variation is associated with low mutation rate in the giant duckweed. Nature Communications, 10, 1243. https://doi.org/10.1038/s41467-019-09235-5

Zhang, D. Q., Jinadasa, K., Gersberg, R. M., Liu, Y., Ng, W. J., & Tan, S. K. (2014). Application of constructed wetlands for wastewater treatment in developing countries – a review of recent developments (2000-2013). Journal of Environmental Management, 141, 116–131. https://doi.org/10.1016/j.jenvman.2014.03.025

Zhang, J., Azizullah, A., Cao, X., Fourounjian, P., & Wang, W. (2020). Genetic diversity and DNA barcoding in the duckweed family. In The Duckweed Genomes (Compendium of Plant Genomes). Springer. https://doi.org/10.1007/978-3-030-11045-1_5

Zhao, Z., Shi, H., Liu, Y., Zhao, H., Su, H., Wang, M., & Zhao, Y. (2014). The influence of duckweed species diversity on biomass productivity and nutrient removal efficiency in swine wastewater. Bioresource Technology, 167, 383–389. https://doi.org/10.1016/j.biortech.2014.06.013

Ziegler, P., Adelmann, K., Zimmer, S., Schmidt, C., & Appenroth, K.-J. (2015). Relative in vitro growth rates of duckweeds (Lemnaceae) — the most rapidly growing higher plants. Plant Biology, 17(Suppl. 1), 33–41. https://doi.org/10.1111/plb.12251

Ziegler, P., Sree, K. S., & Appenroth, K. J. (2017). The uses of duckweed in relation to water remediation. Desalination and Water Treatment, 63, 327–342. https://doi.org/10.5004/dwt.2017.20589

Ziegler, P., Appenroth, K. J., & Sree, K. S. (2023). Survival strategies of duckweeds, the world’s smallest angiosperms. Plants, 12(11), 2215. https://doi.org/10.3390/plants12112215

Downloads

Published

2025-11-06

How to Cite

Muthike, K. G. ., Mutiga , M. ., & Kuria, E. . (2025). Morphological and Molecular Characterization of Duckweed (Lemnaceae) in Selected Wetlands and Pond Waters of Tharaka-Nithi County, Kenya. Journal of Biological Sciences, 5(2), 1–22. Retrieved from https://edinburgjournals.org/journals/index.php/journal-of-biological-sciences/article/view/662

Issue

Section

Articles