Deep Learning-Based Brain Tumor Diagnosis on Smartphones Using Optimized MobileNetV2 Models

Authors

  • Ahmed Yousef Mohmmad Abdelrahman Midocean University

DOI:

https://doi.org/10.70619/vol5iss13pp1-13-698

Keywords:

mobilenetv2, deep learning, tumor brain detection

Abstract

Identifying brain tumors early and accurately is a significant way to improve patient outcomes, but access to numerous advanced diagnostic tools is not standardized across the world due to the cost and availability of MRI scans. We present a lightweight smartphone brain tumor diagnostic tool with deep learning–based diagnostic decision support in a contextualized way. We developed a convolutional neural network (CNN) based on MobileNetV2 for mobile deployment that allows for the processing of MRI images on consumer smartphones in real-time. The model was developed and validated on a publicly available brain tumor MRI dataset of glioma, meningioma, pituitary tumor, and normal cases, achieving an overall accuracy of 98% and classifying cases in less than 100 ms on standard iOS devices. This work demonstrates that with a lightweight architecture and on-device processing for the medical image, diagnostic decision support can be facilitated in a cost-effective, portable way, while also creating confidence factors in patient privacy, and represents an immense opportunity in lower-resourced clinical care, telemedicine, and point-of-care diagnosis around patients. It demonstrates another methodological option for the feasible implementation of advanced deep learning models to assist significant medical imaging workflows in a smartphone device.

Author Biography

Ahmed Yousef Mohmmad Abdelrahman, Midocean University

Faculty of Informatics, AI Department

References

-Sinha, A., & Kumar, T. (2024). Enhancing medical diagnostics: Integrating AI for precise brain tumour detection. Procedia ComputerScience, 235, 456-467 https://doi.org/10.1016/j.procs.2024.04.045.

-Saeed, S., Shaikh, A., & Noor, S. A. (2017). Analysis of Brain Tumors Due to the Usage of Mobile Phones. Mehran University Research Journal of Engineering & Technology, 36(3).

-Ustun, H. I., Bulbul, M., Yolcu Oztel, G., & Sahin, V. H. (2025). On‐Device Brain Tumor Classification from MR Images Using a Smartphone. Advanced Intelligent Systems, 2500205.

-Madapatha, W. E., Gunasekara, S. V. S., & Kumarage, P. M. (2023, April). Smart health app for identifying brain tumors. In 2023, IEEE 8th International Conference for Convergence in Technology (I2CT) (pp. 1-5). IEEE.

-I. Keren Evangeline, S. P. Angeline Kirubha, J. Glory Precious & N. Pazhanivel. (2025) A GUI-Based Application for Breast Cancer Diagnosis from Histopathology Images Using a Sequential Convolutional Neural Network Model. IETE Journal of Research 71:2, pages 457-464.

-Hikmah, N. F., Hajjanto, A. D., Surbakti, A. F. A., Prakosa, N. A., Asmaria, T., & Sardjono, T. A. (2024). Brain tumor detection using a MobileNetV2-SSD model with modified feature pyramid network levels. International Journal of Electrical and Computer Engineering, 14(4), 3995-4004.

- Maiti, R., & Bhoumik, D. (2025). Brain Tumor Detection through Thermal Imaging and MobileNET. arXiv preprint arXiv:2506.23627.

- Uddin, M., Dhanta, R., Pitti, T., Barsasella, D., Scholl, J., Jian, W. S., ... & Syed-Abdul, S. (2023). Incidence and mortality of malignant brain tumors after 20 years of mobile use. Cancers, 15(13), 3492.

- Abdusalomov, A. B., Mukhiddinov, M., & Whangbo, T. K. (2023). Brain tumor detection based on deep learning approaches and magnetic resonance imaging. Cancers, 15(16), 4172.

- Mijwil, M. M., Doshi, R., Hiran, K. K., Unogwu, O. J., & Bala, I. (2023). MobileNetV1-based deep learning model for accurate brain tumor classification. Mesopotamian Journal of Computer Science, 2023, 29-38.

- Xu, L., & Mohammadi, M. (2024). Brain tumor diagnosis from MRI based on MobileNetv2 optimized by the contracted Fox optimization algorithm. Heliyon, 10(1).

-Hekmat, A., Zuping, Z., Bilal, O., & Khan, S. U. R. (2025). Differential evolution-driven optimized ensemble network for brain tumor detection. International Journal of Machine Learning and Cybernetics, 1-26.

- Amran, G. A., Alsharam, M. S., Blajam, A. O. A., Hasan, A. A., Alfaifi, M. Y., Amran, M. H., ... & Eldin, S. M. (2022). Brain tumor classification and detection using a hybrid deep tumor network. Electronics, 11(21), 3457.

- Sailunaz, K., Bestepe, D., Alhajj, S., Özyer, T., Rokne, J., & Alhajj, R. (2023). Brain tumor detection and segmentation: Interactive framework with a visual interface and feedback facility for dynamically improved accuracy and trust. Plos one, 18(4), e0284418.

- Solanki, S., Singh, U. P., Chouhan, S. S., & Jain, S. (2023). Brain tumor detection and classification using intelligent techniques: an overview. IEEE Access, 11, 12870-12886.

- Marmolejo-Saucedo, J. A., & Kose, U. (2024). Numerical grad-cam-based explainable convolutional neural network for brain tumor diagnosis. Mobile Networks and Applications, 29(1), 109-118.

- Charulatha, G., & Balaji, B. (2022). Mobile Application to Detect Brain Tumor Using Transfer Learning”. Journal of Science, Computing and Engineering Research, 3(2), 247-252.

- Gao, Y., Liu, Z., Ju, Z., Wang, N., Zhong, L., & Gao, S. (2024, October). DMobileNet: A Novel MobileNet with Dendritic Learning for Brain Tumor Detection. In 2024 International Conference on Networking, Sensing and Control (ICNSC) (pp. 1-4). IEEE.

Downloads

Published

2025-11-24

How to Cite

Abdelrahman, A. Y. M. . (2025). Deep Learning-Based Brain Tumor Diagnosis on Smartphones Using Optimized MobileNetV2 Models. Journal of Information and Technology, 5(13), 1–13. https://doi.org/10.70619/vol5iss13pp1-13-698

Issue

Section

Articles